The
Mob Programming
Guidebook

Maaret Pyhajarvi & Llewellyn Falco

Mob Programming Guidebook

Maaret Pyhijarvi and Llewellyn Falco
This book is for sale at http://leanpub.com/mobprogrammingguidebook

This version was published on 2018-03-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2015 - 2018 Llewellyn Falco and Maaret Pyhédjarvi

http://leanpub.com/mobprogrammingguidebook
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Maaret Pyh&jarvi and Llewellyn Falco by spreading the word about this book
on Twitter!

The suggested hashtag for this book is #MobProgrammingGuidebook.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

#MobProgrammingGuidebook

http://twitter.com
https://twitter.com/search?q=%23MobProgrammingGuidebook
https://twitter.com/search?q=%23MobProgrammingGuidebook

Contents

What is Mob Programming? o
Mob Programming
Why would you have 5-8 people working on one thing?
Getting the best out of yourteam
Quality - Separate Programming
The benefits of high communication

How touse thisbook
Beginner facilitator L
Intermediate facilitator
Advanced facilitator

Not Just Programming

Setting Up The Space
BasicSetup. e
The Screen
The Facilitator
The Work
The Computer
Seatingandroles
TheRotation e

CONTENTS

Yes,and... 20
Intentional code L L 20
Smallsteps 22
The Rules for Working with Each Other 22
Closing a Mobbing Session 25
Learning 25
Observation Retrospective Framework 25
Part 1: The Explanation 25
Part 2: Collecting observations 30
Part 3: Reading observations 30
Final thoughts 31
Mobbing Cheat Sheet 32
Mobbing 32
Retrospective L 32
Strong-Style Pairing 33
Basic navigation flow 33
Cellphoneexercise. 34
Mobbing with an audience L oL 36
Scaling 36
Audience 38
When People GetStuck 40
Situation 1 - navigatorisconfused Lo oL 40
Situation 2 - only one person knows whattodo 40
Situation 3 - purposefully transferring knowledge 40
Situation 4 - optingout 41
Remote Mobbing 42
The Remote Employee 42
The Remote Company i 42
The Remote Team e 42
Video o 43

CONTENTS

Building habits o o 45
Endhappy oo 45
Learningtomob L 45
Timing o 46

Monitoring yourmob 47
Engagement 47

Full team engagement 49
No designated navigator 49
Themobtimer 49
Encouraging participation oo oL 49
Walking away 51
Holding thespace 51

What Established Mobbing Looks Like 53

Different ways to contribute Lo o 55
Informationsearch Lo 55
Bring someonein L L 55
Contributeideas L 55
Contributing badideas 56
History 56
Empathyinthemob. 56
Patience 56
Impatience L 56
Customer VOiCe e 56
Noticing feelings L 57

REFERENCES e 58
Onlineaswell 58

Deliberate Practice 59
FizzBuzz e 59
Roman Numerals 59
Games e e e 59
Checkouts e 60
Math o 60

Words /Text e 60

CONTENTS

Exploratory Testing e 61
Non-development 62
Other e 62
Mob timers 63
Screen sharingtools L 65
Voiceand video 65
Screenandcontrol 65

Full package 66

CONTENTS 1

To the person reading this book in progress,

We wanted to say thank you. Please enjoy and provide us with feedback on what you liked
or didn’t to help us further grow the book.

Creating a book takes a lot of persistence and support from early adopters like yourself helps
us to keep going.

Thank you.
Maaret Pyhéjarvi & Llewellyn Falco

maaret@iki.fi isidore@setgame.com

PART 1

First Time Mobbing with a New Group

In this section, we will show techniques and methods when dealing with a new group of
people, who are not familiar with mob programming. In these situations, you will see more
structure to allow people to grow into working as a mob.

First time mobbing commonly occurs with teams at a company, temporary groups at a
conference or meet-up, or at classes and workshops.

What is Mob Programming?

“All the brilliant people working on the same thing, at the same time, in the
same space, on the same computer.” — Woody Zuill (the discoverer of Mob
Programming)

Mob Programming is a style of programming in which the entire team sits together and
works on a single task at a time. Teams that have worked this way have found that
many of the problems that plague normal development just melted away, possibly because
communication and learning increases. Teams also find that the quality of their code
increases. They find their capacity to create increases. However, the best part of all this is
that teams end up being happier and more cohesive.

Navigators

& g Yy .

Mob Programming

What is Mob Programming? 4

Mob Programming

In mob programming, there is a driver, who is the person at the keyboard. Many people
think this means having five people watch one person work. That is not mob programming.
In fact, mobbing has the rule that the driver is not allowed to think while at the keyboard.
This means that you can’t have people just watching the person type. Mobbing is about the
entire team collaborating together. Having a single computer and driver allows everybody’s
thoughts and insights to be captured for the task at hand.

Why would you have 5-8 people working on one thing?

Alot of people think that it must be inefficient and wasteful to have your entire team working
on one problem. Couldn’t you get more out them if you divide and conquer? The answer is:
No. It’s better to think about this in a completely different fashion.

Instead of thinking about how I can get the most out of my team, in mob programming we
ask how can I get the best out of my team? This process was discovered by Woody Zuill
and his team at Hunter Industries through the process of constantly paying attention to what
they were doing, and doing more of the things that were working.

Maybe you’ve had the experience where the team came together and swarmed over a
particularly tough problem. By working together as a team, the swarm might have been able
to resolve that problem. We’ve talked to many people who have had this experience. The
big difference is that after having success working in this manner, most teams say “Problem
solved, let’s go back to normal”. Mobbing says “We were very high performing, how can we
do more of that?”.

Getting the best out of your team

All of us have good and bad skills, areas, and moments. When you work by yourself, both
your best and your worst makes it into the code. When you have a team of people working
together, but separately, their best and their worst makes it into the code.

In the end, it’s only what makes it into the code that actually matters.

What is Mob Programming? 5

Quality - Separate Programming

When you work as a mob, everybody still has their highs and lows. However, this is not what
makes it into the code. What makes it into the code is only the highest points. This can be
particularly empowering for team members whose programming skill might not be the best.
We have found that on many teams, some of the best ideas come from members that trouble
is turning those insights into production code. Left by themselves, those insights die. In the
mob, they flourish.

Quality

Person 1 Person 2

Quality - Separate Programming

What is Mob Programming? 6

Quality

The BEST of the whole team

Makes it into the code

Quality - Mob Programming

The benefits of high communication

Very often people make mistakes. Maybe we misunderstood a detail of a requirement. Maybe
your understanding of small is different than my understanding of small. Or maybe there is
just an aspect that was left out and forgotten. If make this mistake on Monday morning, but
I don’t find out about it until Thursday afternoon, I am going to compound that mistake all
week. And the worse thing here is, because I've spent so much effort I will become defensive
of my work and try to protect my mistake.

When we work in a mob, many of these mistakes are detected the moment they occur. Mainly
because somebody on the team has that knowledge and sometimes because someone on the
team is willing to ask a question.

There are tremendous benefits to this just-in-time knowledge. And unfortunately, the cost of
the delays is mainly hidden and does not show up on anybody’s accounting sheet. If the hours
programmers waste because of gaps in knowledge or understanding were actually accounted
for, there would be much less resistance to mob programming.

In other words, everyone thinks that five people working by themselves mean that everyone
is working well independently. This is rarely the case.

Imagine a jazz band. Are you going to get better music if you put everyone together and have

What is Mob Programming? 7

them play a song or if you send them off to record separate pieces and then try to integrate
them later?

How to use this book

This is a recipe book for how to create a highly functional and collaborative mob. There are
two main recipes in this book.

« Facilitating a new mob
» Growing a long-term mob

Quite often, we find people altering the recipes before they know how the overall dynamics
work or what purpose each ingredient provides. Here is our suggestion.

The recipes are for how to work with your groups. How closely you adhere to these recipes
should be connected to your experience as a mob facilitator.

Beginner facilitator

If you are a beginning mob facilitator, follow each step very specifically. Some of them will
seem weird, counterintuitive or just wrong. Don’t worry about that yet. Many facilitators
need 20-40 iterations in this mode before they are ready to advance. You may need less.
However, we suggest you do a minimum of five times before advancing. This will give you
a foundation to build on.

Intermediate facilitator

Once you have facilitated a mob many times, you will start to get a sense of what is needed
and what each part contributes. You will start to move in a direction that is uniquely yours.
At this stage, focus on the purpose of each step and start to play with the variations suggested
in this book and the variations that come up from your own team. Go slowly. Try to vary
only one or two things per session.

How to use this book 9

Advanced facilitator

Disregard the steps. Just pay attention to the things that are working for you and focus on
doing more of those things. Pay attention to subtleties of your team and the lessons of the
retrospectives. At this point, the book has served its purpose and is only here to remind you
of some of the foundational principles. Now is the time to create your own way of working
together.

Not Just Programming

A lot of times because the term Mob Programming includes the word programming, people
wrongly assume that it is about programming. It is actually about the mobbing. You can have
mob programming, mob testing, mob designing, mob writing, mob anything. A lot of times
we just refer to this under the generic term mobbing. In this book, however, we will often use
the term mob programming to be distinctive to the method. Please do not limit this process
to programming and feel free to substitute whichever word you desire for programming.

TL;DR: It’s really Mob (insert activity)

10

Setting Up The Space

For your first time doing mob programming, you do not need to worry too much about the
space. We’re going to lay out just the most critical things that are helpful.

Note: If you are doing this with more than ten people, please check out the chapter mobbing
with an audience.

Basic Setup

Mob Programming Setup

[Screen \

Laptop

6;?@&
Driver ' Mob %,

(people rotate counter-clockwise every 4 mins) o

@ Navigator
Yo O

Facilitator

Mob Programming Setup

11

Setting Up The Space 12

The Screen

The screen, projector or TV should be visible and clear to everybody in the mob. The chairs
should be facing forward towards the screen as much as possible. People will need to stand
up and move around frequently, so there should be enough room to do that comfortably. It
is not helpful to have backpacks and laptops during this. Usually, we put bags in the corner
of the room. However, if people are uncomfortable with this, it’s not a big deal.

It is also important to have a whiteboard where the navigator can express ideas.

The Facilitator

As you are reading this book, you will most likely be the facilitator. The important fact to
note is that mob programming works much better in the beginning when there is a facilitator.
As a facilitator, your job is to ensure that all the steps of mob programming are being carried
out appropriately. Most of the time, you will not be doing the programming yourself. The
exception being if you need to pause the mob to introduce a new idea by temporarily stepping
into the navigator role. You do not need to be a good programmer or even a programmer at
all to be a good facilitator. This is not a team lead position. When everything is going well,
you will be doing nothing at all.

The Work

The first question is always: “What are we going to work on?” While there are many answers
to this question, whatever you decide to work on, it should be simple. You are going to learn
a lot working together as a mob. Don’t try to do that while adding the extra complexity of
a super-hard task. After you’ve learned to work together, it’s a good time to tackle the hard
tasks.

There are three common items to work on as your first task.
1. Simple work task
If you have a simple task to do, this can be a perfect place to start. Just do it as a mob.

1. Refactoring large methods

Setting Up The Space 13

Many teams have code that is hard to read and understand. A refactoring for readability
exercise makes a great first experience in mobbing. Simply choose a method that everyone
agrees is troublesome and you are going to work with soon anyways. When you do this
exercise, we suggest starting with the simple extraction of paragraphs of code and giving
them better names. The only two refactorings we suggest are extract method and rename.
We also suggest that you frequently commit, usually after each paragraph.

1. Programming Katas

Katas are simple exercises that are used to practice programming. The more common ones
include FizzBuzz, Roman Numerals, and Tic-Tac-Toe. For more Katas, check the reference
in the back. However, any problem usually makes a good Kata. These are often done in the
test-first style of programming.

The Computer

While you can get away with just about anything for your first mob, here are some tips to
make things easier.

1. Keyboard and mouse

Having an external keyboard and mouse just makes everything simpler for the driver. An
external keyboard and mouse can also allow you to close the laptop, which is even better
because then everybody is looking at the same the screen. This allows the driver to cue off
of people pointing to the screen.

1. Screen

While you usually have little control over the screen or projector, when you have a choice,
try to get a bigger screen and a high-resolution projector. Remember that the code often has
many more details than a regular slide presentation.

1. Simple editor with line numbers

Setting Up The Space 14

Line numbers make it easy to talk about where your focus is at. Editors that allow for simple
typing and scrolling make it easier for everybody to track what is going on. In particular,
editors like vi and Emacs add to the cognitive load if not configured in the way each
individual member of the team normally uses them. Finally, make sure the font size is big
enough so that everyone can easily read it.

Seating and roles

The Driver

The driver is the typist. There should be “no thinking” done by the driver. This means that
for anything to happen, there will need to be talking involved. It is important that the driver
trusts the navigator and does their best to listen and do what is asked.

The Navigator

The navigator is the main person programming. While they will take insight and help from
the mob, this is the person who has to make the final decision on what to do. They should be
talking about a task in the highest level of abstraction possible. However, in the beginning,
this is often at the level of keystrokes and simple programming structures.

We will go into this more in the chapter on Strong-Style Pairing.
The Mob
The mob is checking the navigator and contributing insights when appropriate. Remember

that you will be rotating fast and soon a new person will be navigating. This forces the other
people in the mob to pay attention.

The Facilitator

The facilitator sits in the back and does not rotate with the rest of the mob. If it is necessary
for them to step in, they can pause the mob and assume whatever role is needed, except that
of the driver.

Setting Up The Space 15

The Rotation

In the beginning, you will be using a 4-minute timer. This is usually your phone. It should
have an audible (but pleasant) sound at the end of each turn. At the end of each turn,
everybody stands up and rotates to the next seat. The navigator should become the driver.
The driver should join the mob.

Note: Experienced mobs will use a special software instead of phones as their timer. We
recommend not using this the first time people are mobbing.

Congratulations!
You are now ready to start your first mob programming session!

Working in Your First Mob

Mob Programming

Is the mob working?

Heuristic: If everything is going right, rotation will not disrupt the flow of the mob.

16

Working in Your First Mob 17

Preparing the navigator

Part of having a good mobbing experience is being able to have a clear direction that is shared
throughout the team. A few little tricks can be done to enable this to happen as it is not a
habit most people have acquired yet.

Ask the navigator what they are going to do. Here are some examples of when a navigator
has a clear direction versus when they are lost.

Lost:

Q: “What are you going to do?”
A: “Tdon’t know.”

A: “Something with the test.”
A: “Get it to work.”

A: “The next scenario.”

A: (stares blankly)

Has direction:

: “What are you going to do?”

: “The code does not compile. We need to fix that.”

: “We need to write the test for handling positive numbers.”
: “T'd like to give that paragraph a better name.”

“We haven’t checked in the code for a while, let’s do that.”

> > > >0

Sometimes you can get to a direction through a series of questions. For example:

“What are you going to do next?”
“I'don’t know.”

: “Does the code work?”

“No.”

“Why?”

“It doesn’t compile.”

“Why not?”

: “The class does not exist.”

“What are you going to do next?”
“We need to create the class.”

Working in Your First Mob 18

Examples

If you are working on a task or doing test-first development, it is very useful to have an
example written on a whiteboard. The examples should be very simple, and only show one
path at a time. This means you can not use conditional words like “or”, “if”, “depending”, or
“maybe”. If there is an example, it might take many turns before its finished, and having it
on the board will give guidance for the whole team on what they need to do as each new
navigator takes over and continues on the task.

Examples should make you feel like the person telling the example actually did the thing
yesterday. Imagine a teenager talking to their parent.

: “What did you do last night?”

: “T went to a friends house and played Scrabble.”

: “How did the game go?”

: “Well, if I had played words on a triple letter score, then they would score three times.”

: “Oh, who won?”

“The person with the highest score.”

>0 B0 B0

Does this sound like the teenager actually played Scrabble last night? This is what bad
examples feel like. You want a good concrete example.

Q: “How did the game go?”

A: “There were three players: me, Jennifer and Samantha. Samantha went first playing the
word ‘again’ for 7 points. ... Jennifer ended up winning with 297 points.”

Now you have an example that you can turn into code.

These examples should be drawn on a whiteboard, and they will help everybody in the team
be on the same page. Being on the same page means that everyone is working towards the
same goal.

Consume first

It is extremely beneficial to use the “consume first” style of programming as opposed to the
more common “build-up” style of programming. This allows the group to have a clear idea
of where they are going and what is needed. Let’s look at two examples to show us how this
works.

Build-up example

Working in Your First Mob 19

public int x;

public int y;

Q: What do you need to do next?
A: It’s almost impossible to know what to do next right now!

The navigator had a plan, but unless you are in their head, you can’t continue with it. And
it is hard to check if what they were doing is correct.

Consume-first example

Point p = new Point(10, 20);

Q: What do you need to next?
A: I notice that Point does not compile yet. Let’s create that.

public Point(int x, int vy)
{
}

Q: What do you need to next?
A: I notice that we are not holding on to the x and y.

this.x

this.y

Q: What do you need to next?
A: I notice that it does not compile. There is no this.x.

public int x;

Q: What do you need to next?
A: There’s no this.y.

Working in Your First Mob 20
public int y;

Because the overall picture was created and used, we were able to fill in the spaces even if
the navigator changes. Also, if in the very beginning it turns out that we should have used a
double (20.5 vs. 20) we would have caught it right away and changed it to a double instead
of an int. This kind of mistakes and assumptions happen all the time in programming. The
consume first style allows the group to catch them and come to a shared understanding.

Yes, and...

When working as a mob, it is important to follow the “Yes, and...“ rule of improvisational
theater. The idea here is to continue with what you have. Do not to delete and undo what the
previous navigators did before you. You can refactor but do not rewrite. This allows progress
to be made continually and prevents people from being shut down in the group.

If you follow this rule, then each step in the rotation moves the mob further ahead than they
were before.

Intentional code

Related to the consume first style of programming and writing on the whiteboard, it can be
very helpful to write a code comment in English to state what you intend to do. Note that
you can refactor this comment as well.

//take the individual points of 6,7 and 0,0 and combine them to form a line

While this says what we want to do in English, it’s not as clear as it could be. We can refactor
at this point.

//create a line from 6,7 to 0,0

Now that the English is cleaner, there’s a much better chance that the resulting code will be
cleaner.

Working in Your First Mob 21

Writing the English allows you to quickly write 3-4 lines at once, which will then serve as
bookmarks for what still needs to be done. Once the code is written, you can delete the
English. It is merely a stepping stone to write from intention.

When you are translating the intention to code, you should usually end up with one line of
English per one line of code. So if you write five comments, you should end up with five lines
of code in that method. This will influence encapsulation either by methods or by classes in
the resulting code.

Native language

If your native language isn’t English, start by stating the intention in your native language.
Translate into English and then translate that English into code. Even though most groups
code in English, regardless of their native language, the intention and subtleties that occur in
one’s native language are powerful and valuable. Skipping the step of forming your intention
in your native language will give you worse results.

Code in English

A lot of times programmers are so used to thinking in code, that you have to remind them
to think in English. Here is a common example.

We are trying to write the method that calculates the perimeter of the triangle.

Q: “How do you calculate the perimeter of the triangle?”

A: “First we create a variable to hold the perimeter.

Next, we iterate through the different sides and for each side we add the length to the existing
perimeter.

Finally, we return the perimeter.”

Notice two things. First, there is an awful lot of programming words in this English
(variable, iterate, return). Second, the programmer is giving the comments for a for-loop
implementation that is already in their head. This is not how a regular person would tell
someone to calculate a perimeter.

To correct this, you might say something like
Q:“How would you tell a child?”
A:“You sum up the lengths of the sides.”

Because this intention is more intentional and less prescriptive, there is a lot more freedom
to come up with different code translations.

Working in Your First Mob 22

Small steps
There are two measures to pay attention to when it comes to small steps.

1. How long has it been since you've seen feedback?
2. How long has it been since you checked in?

These two measures serve separate purposes.

The first measure of feedback lets you know if the group is taking too large steps when
completing their tasks. Feedback can come in many forms. But the two big ones are from the
compiler and from executing the program.

Feedback helps to bring everyone in the team to the same mental space. Do not worry about
the feedback always being positive. Many times seeing how something fails helps us to know
what success looks like. Likewise, a different type of failure is also good feedback. It lets us
know that we are making progress. Finally, even seeing failure that confirms that we are
where we think we are is helpful, especially for the times when we aren’t.

The second measure of feedback is how long since you committed code to your repository.
This has to do with how large of a task you are taking at a time as opposed to making
progress within a task. It is possible to take very many small steps, while still taking too large
of a task overall. Not being able to check in frequently has other negative side effects as well.
If you cannot check in frequently, it can be hard to quit when you need to (lunch, end of the
workday, etc.). Large changes between commits can also make it hard to work with other
teams because of merge conflicts. If you are checking in frequently, you will not experience
merge conflicts - however, other teams might. One saying that emphasizes this is:

Be the bird, not the statue.

The Rules for Working with Each Other

It is useful to post the following rule on the wall as well as get a general working agreement
from the mob.

We will treat everyone with kindness, consideration, and respect.

One interesting aspect of treating each other with kindness, consideration, and respect is
that it tends to make everyone in the mob treat each other better and like each other more.

Working in Your First Mob 23

Ironically, cognitive science teaches us that the people we treat kindly we end up liking,
rather than the other way around.

Kindness is rather self-explanatory, but consideration and respect are worth going into.

Consideration

Consideration is really about listening. This is something we don’t get a lot of practice with
because of the focus on individual contributions. The place it is going to show up the most
is at the driver seat. Often the driver will start by not listening to the navigator.

The facilitator can usually fix this by simply saying “No thinking at the keyboard” or “There’s
too much thinking going on at the keyboard.”

Another way that this will manifest itself is that good ideas will be spoken by members of the
mob and will be totally ignored. Usually, these ideas are softly spoken by more introverted
members. As a facilitator, it is your job to call attention to those ideas and make sure that
everyone gets heard.

Over time the mob will learn the habits of listening to everyone and people will find their
spots to contribute. As we gain the experience of being heard, we will also change how we
speak.

Another aspect to consideration is to remember to allow other people to shine. You don’t
always need to be showing how much you know. And if someone has a differing way of
doing it, try their way first and then consider if your idea would make it better. It’s ok to try
a solution in multiple ways.

One final violation of consideration is when members who are not in either the driver or
designated navigator spot, tune out, usually opening their laptops or phones. This can be a
tricky one to handle. I prefer to handle it with environmental settings. Chairs without tables
to put a laptop on, and frequent rotations will do more to keep everybody engaged than
disciplining them when they are not paying attention.

Respect

We always assume that the person who wrote the code before us did the
best they could with the knowledge and circumstances they were in at the
time they wrote it.

Working in Your First Mob 24

Nothing is more corrosive than disrespect in a mob. A group can bond over making fun of
some code that was written by someone else, but you will pay a high price for that bonding
when everybody is nervous that someday it might be them that everybody is ridiculing.
We want to create a space that is safe. Safe to experiment. Safe to learn. Safe to show
your vulnerabilities and weaknesses. Safe to look at and improve code without judging and
criticizing the author. Remember that mob programming exposes a lot about everybody
involved, and we need to be safe and supported.

Closing a Mobbing Session

Learning

Learning is fundamentally made up of two parts. The first part is the experiences which
are the fuel for learning. You need to have experiences to learn from. You’ve just had an
experience of mobbing. This is a great opportunity to learn. Your tank is full of fuel.

However, fuel itself is not enough to get you anywhere. You need to burn it. The way you
harness the potential energy of your experiences is by retrospecting over them, thinking
through them, examining them and imagining new experiments for future experiences.

When we finish a mobbing session, we will run a retrospective to help us learn all we can
from the session. There are many ways of running a retrospective. We are going to show you
the most common way that we use.

Observation R