

Mob Programming Guidebook

Maaret Pyhäjärvi and Llewellyn Falco

This book is for sale at http://leanpub.com/mobprogrammingguidebook

This version was published on 2018-03-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2015 - 2018 Llewellyn Falco and Maaret Pyhäjärvi

http://leanpub.com/mobprogrammingguidebook
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Maaret Pyhäjärvi and Llewellyn Falco by spreading the word about this book
on Twitter!

The suggested hashtag for this book is #MobProgrammingGuidebook.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

#MobProgrammingGuidebook

http://twitter.com
https://twitter.com/search?q=%23MobProgrammingGuidebook
https://twitter.com/search?q=%23MobProgrammingGuidebook

Contents

PART 1 . 2

What is Mob Programming? . 3
Mob Programming . 4
Why would you have 5-8 people working on one thing? 4
Getting the best out of your team . 4
Quality - Separate Programming . 5
The benefits of high communication . 6

How to use this book . 8
Beginner facilitator . 8
Intermediate facilitator . 8
Advanced facilitator . 9

Not Just Programming . 10

Setting Up The Space . 11
Basic Setup . 11
The Screen . 12
The Facilitator . 12
The Work . 12
The Computer . 13
Seating and roles . 14
The Rotation . 15

Working in Your First Mob . 16
Is the mob working? . 16
Preparing the navigator . 17
Consume first . 18

CONTENTS

Yes, and… . 20
Intentional code . 20
Small steps . 22
The Rules for Working with Each Other . 22

Closing a Mobbing Session . 25
Learning . 25
Observation Retrospective Framework . 25
Part 1: The Explanation . 25
Part 2: Collecting observations . 30
Part 3: Reading observations . 30
Final thoughts . 31

Mobbing Cheat Sheet . 32
Mobbing . 32
Retrospective . 32

Strong-Style Pairing . 33
Basic navigation flow . 33
Cellphone exercise . 34

Mobbing with an audience . 36
Scaling . 36
Audience . 38

When People Get Stuck . 40
Situation 1 - navigator is confused . 40
Situation 2 - only one person knows what to do 40
Situation 3 - purposefully transferring knowledge 40
Situation 4 - opting out . 41

Remote Mobbing . 42
The Remote Employee . 42
The Remote Company . 42
The Remote Team . 42
Video . 43

PART 2 . 44

CONTENTS

Building habits . 45
End happy . 45
Learning to mob . 45
Timing . 46

Monitoring your mob . 47
Engagement . 47

Full team engagement . 49
No designated navigator . 49
The mob timer . 49
Encouraging participation . 49
Walking away . 51
Holding the space . 51

What Established Mobbing Looks Like . 53

Different ways to contribute . 55
Information search . 55
Bring someone in . 55
Contribute ideas . 55
Contributing bad ideas . 56
History . 56
Empathy in the mob . 56
Patience . 56
Impatience . 56
Customer voice . 56
Noticing feelings . 57

REFERENCES . 58
Online as well . 58

Deliberate Practice . 59
FizzBuzz . 59
Roman Numerals . 59
Games . 59
Checkouts . 60
Math . 60
Words / Text . 60

CONTENTS

Exploratory Testing . 61
Non-development . 62
Other . 62

Mob timers . 63

Screen sharing tools . 65
Voice and video . 65
Screen and control . 65
Full package . 66

CONTENTS 1

To the person reading this book in progress,

We wanted to say thank you. Please enjoy and provide us with feedback on what you liked
or didn’t to help us further grow the book.

Creating a book takes a lot of persistence and support from early adopters like yourself helps
us to keep going.

Thank you.

Maaret Pyhäjärvi & Llewellyn Falco

maaret@iki.fi isidore@setgame.com

PART 1
First Time Mobbing with a New Group

In this section, we will show techniques and methods when dealing with a new group of
people, who are not familiar with mob programming. In these situations, you will see more
structure to allow people to grow into working as a mob.

First time mobbing commonly occurs with teams at a company, temporary groups at a
conference or meet-up, or at classes and workshops.

2

What is Mob Programming?
“All the brilliant people working on the same thing, at the same time, in the
same space, on the same computer.” – Woody Zuill (the discoverer of Mob
Programming)

Mob Programming is a style of programming in which the entire team sits together and
works on a single task at a time. Teams that have worked this way have found that
many of the problems that plague normal development just melted away, possibly because
communication and learning increases. Teams also find that the quality of their code
increases. They find their capacity to create increases. However, the best part of all this is
that teams end up being happier and more cohesive.

Mob Programming

3

What is Mob Programming? 4

Mob Programming

In mob programming, there is a driver, who is the person at the keyboard. Many people
think this means having five people watch one person work. That is not mob programming.
In fact, mobbing has the rule that the driver is not allowed to think while at the keyboard.
This means that you can’t have people just watching the person type. Mobbing is about the
entire team collaborating together. Having a single computer and driver allows everybody’s
thoughts and insights to be captured for the task at hand.

Why would you have 5-8 people working on one thing?

A lot of people think that it must be inefficient andwasteful to have your entire teamworking
on one problem. Couldn’t you get more out them if you divide and conquer? The answer is:
No. It’s better to think about this in a completely different fashion.

Instead of thinking about how I can get the most out of my team, in mob programming we
ask how can I get the best out of my team? This process was discovered by Woody Zuill
and his team at Hunter Industries through the process of constantly paying attention to what
they were doing, and doing more of the things that were working.

Maybe you’ve had the experience where the team came together and swarmed over a
particularly tough problem. By working together as a team, the swarm might have been able
to resolve that problem. We’ve talked to many people who have had this experience. The
big difference is that after having success working in this manner, most teams say “Problem
solved, let’s go back to normal”. Mobbing says “We were very high performing, how can we
do more of that?”.

Getting the best out of your team

All of us have good and bad skills, areas, and moments. When you work by yourself, both
your best and your worst makes it into the code. When you have a team of people working
together, but separately, their best and their worst makes it into the code.

In the end, it’s only what makes it into the code that actually matters.

What is Mob Programming? 5

Quality - Separate Programming

When you work as a mob, everybody still has their highs and lows. However, this is not what
makes it into the code. What makes it into the code is only the highest points. This can be
particularly empowering for team members whose programming skill might not be the best.
We have found that on many teams, some of the best ideas come from members that trouble
is turning those insights into production code. Left by themselves, those insights die. In the
mob, they flourish.

Quality - Separate Programming

What is Mob Programming? 6

Quality - Mob Programming

The benefits of high communication

Very often people make mistakes. Maybe we misunderstood a detail of a requirement. Maybe
your understanding of small is different than my understanding of small. Or maybe there is
just an aspect that was left out and forgotten. If I make this mistake on Monday morning, but
I don’t find out about it until Thursday afternoon, I am going to compound that mistake all
week. And the worse thing here is, because I’ve spent so much effort I will become defensive
of my work and try to protect my mistake.

Whenwework in a mob, many of these mistakes are detected the moment they occur. Mainly
because somebody on the team has that knowledge and sometimes because someone on the
team is willing to ask a question.

There are tremendous benefits to this just-in-time knowledge. And unfortunately, the cost of
the delays is mainly hidden and does not show up on anybody’s accounting sheet. If the hours
programmers waste because of gaps in knowledge or understanding were actually accounted
for, there would be much less resistance to mob programming.

In other words, everyone thinks that five people working by themselves mean that everyone
is working well independently. This is rarely the case.

Imagine a jazz band. Are you going to get better music if you put everyone together and have

What is Mob Programming? 7

them play a song or if you send them off to record separate pieces and then try to integrate
them later?

How to use this book
This is a recipe book for how to create a highly functional and collaborative mob. There are
two main recipes in this book.

• Facilitating a new mob
• Growing a long-term mob

Quite often, we find people altering the recipes before they know how the overall dynamics
work or what purpose each ingredient provides. Here is our suggestion.

The recipes are for how to work with your groups. How closely you adhere to these recipes
should be connected to your experience as a mob facilitator.

Beginner facilitator

If you are a beginning mob facilitator, follow each step very specifically. Some of them will
seem weird, counterintuitive or just wrong. Don’t worry about that yet. Many facilitators
need 20-40 iterations in this mode before they are ready to advance. You may need less.
However, we suggest you do a minimum of five times before advancing. This will give you
a foundation to build on.

Intermediate facilitator

Once you have facilitated a mob many times, you will start to get a sense of what is needed
and what each part contributes. You will start to move in a direction that is uniquely yours.
At this stage, focus on the purpose of each step and start to play with the variations suggested
in this book and the variations that come up from your own team. Go slowly. Try to vary
only one or two things per session.

8

How to use this book 9

Advanced facilitator

Disregard the steps. Just pay attention to the things that are working for you and focus on
doing more of those things. Pay attention to subtleties of your team and the lessons of the
retrospectives. At this point, the book has served its purpose and is only here to remind you
of some of the foundational principles. Now is the time to create your own way of working
together.

Not Just Programming
A lot of times because the term Mob Programming includes the word programming, people
wrongly assume that it is about programming. It is actually about the mobbing. You can have
mob programming, mob testing, mob designing, mob writing, mob anything. A lot of times
we just refer to this under the generic term mobbing. In this book, however, we will often use
the term mob programming to be distinctive to the method. Please do not limit this process
to programming and feel free to substitute whichever word you desire for programming.

TL;DR: It’s reallyMob _____ (insert activity) _____

10

Setting Up The Space
For your first time doing mob programming, you do not need to worry too much about the
space. We’re going to lay out just the most critical things that are helpful.

Note: If you are doing this with more than ten people, please check out the chaptermobbing
with an audience.

Basic Setup

Mob Programming Setup

11

Setting Up The Space 12

The Screen

The screen, projector or TV should be visible and clear to everybody in the mob. The chairs
should be facing forward towards the screen as much as possible. People will need to stand
up and move around frequently, so there should be enough room to do that comfortably. It
is not helpful to have backpacks and laptops during this. Usually, we put bags in the corner
of the room. However, if people are uncomfortable with this, it’s not a big deal.

It is also important to have a whiteboard where the navigator can express ideas.

The Facilitator

As you are reading this book, you will most likely be the facilitator. The important fact to
note is that mob programming works much better in the beginning when there is a facilitator.
As a facilitator, your job is to ensure that all the steps of mob programming are being carried
out appropriately. Most of the time, you will not be doing the programming yourself. The
exception being if you need to pause the mob to introduce a new idea by temporarily stepping
into the navigator role. You do not need to be a good programmer or even a programmer at
all to be a good facilitator. This is not a team lead position. When everything is going well,
you will be doing nothing at all.

The Work

The first question is always: “What are we going to work on?” While there are many answers
to this question, whatever you decide to work on, it should be simple. You are going to learn
a lot working together as a mob. Don’t try to do that while adding the extra complexity of
a super-hard task. After you’ve learned to work together, it’s a good time to tackle the hard
tasks.

There are three common items to work on as your first task.

1. Simple work task

If you have a simple task to do, this can be a perfect place to start. Just do it as a mob.

1. Refactoring large methods

Setting Up The Space 13

Many teams have code that is hard to read and understand. A refactoring for readability
exercise makes a great first experience in mobbing. Simply choose a method that everyone
agrees is troublesome and you are going to work with soon anyways. When you do this
exercise, we suggest starting with the simple extraction of paragraphs of code and giving
them better names. The only two refactorings we suggest are extract method and rename.
We also suggest that you frequently commit, usually after each paragraph.

1. Programming Katas

Katas are simple exercises that are used to practice programming. The more common ones
include FizzBuzz, Roman Numerals, and Tic-Tac-Toe. For more Katas, check the reference
in the back. However, any problem usually makes a good Kata. These are often done in the
test-first style of programming.

The Computer

While you can get away with just about anything for your first mob, here are some tips to
make things easier.

1. Keyboard and mouse

Having an external keyboard and mouse just makes everything simpler for the driver. An
external keyboard and mouse can also allow you to close the laptop, which is even better
because then everybody is looking at the same the screen. This allows the driver to cue off
of people pointing to the screen.

1. Screen

While you usually have little control over the screen or projector, when you have a choice,
try to get a bigger screen and a high-resolution projector. Remember that the code often has
many more details than a regular slide presentation.

1. Simple editor with line numbers

Setting Up The Space 14

Line numbers make it easy to talk about where your focus is at. Editors that allow for simple
typing and scrolling make it easier for everybody to track what is going on. In particular,
editors like vi and Emacs add to the cognitive load if not configured in the way each
individual member of the team normally uses them. Finally, make sure the font size is big
enough so that everyone can easily read it.

Seating and roles

The Driver

The driver is the typist. There should be “no thinking” done by the driver. This means that
for anything to happen, there will need to be talking involved. It is important that the driver
trusts the navigator and does their best to listen and do what is asked.

The Navigator

The navigator is the main person programming. While they will take insight and help from
the mob, this is the person who has to make the final decision on what to do. They should be
talking about a task in the highest level of abstraction possible. However, in the beginning,
this is often at the level of keystrokes and simple programming structures.

We will go into this more in the chapter on Strong-Style Pairing.

The Mob

The mob is checking the navigator and contributing insights when appropriate. Remember
that you will be rotating fast and soon a new person will be navigating. This forces the other
people in the mob to pay attention.

The Facilitator

The facilitator sits in the back and does not rotate with the rest of the mob. If it is necessary
for them to step in, they can pause the mob and assume whatever role is needed, except that
of the driver.

Setting Up The Space 15

The Rotation

In the beginning, you will be using a 4-minute timer. This is usually your phone. It should
have an audible (but pleasant) sound at the end of each turn. At the end of each turn,
everybody stands up and rotates to the next seat. The navigator should become the driver.
The driver should join the mob.

Note: Experienced mobs will use a special software instead of phones as their timer. We
recommend not using this the first time people are mobbing.

Congratulations!
You are now ready to start your first mob programming session!

Working in Your First Mob

Mob Programming

Is the mob working?

Heuristic: If everything is going right, rotation will not disrupt the flow of the mob.

16

Working in Your First Mob 17

Preparing the navigator

Part of having a goodmobbing experience is being able to have a clear direction that is shared
throughout the team. A few little tricks can be done to enable this to happen as it is not a
habit most people have acquired yet.

Ask the navigator what they are going to do. Here are some examples of when a navigator
has a clear direction versus when they are lost.

Lost:

Q: “What are you going to do?”
A: “I don’t know.”
A: “Something with the test.”
A: “Get it to work.”
A: “The next scenario.”
A: (stares blankly)

Has direction:

Q: “What are you going to do?”
A: “The code does not compile. We need to fix that.”
A: “We need to write the test for handling positive numbers.”
A: “I’d like to give that paragraph a better name.”
A: “We haven’t checked in the code for a while, let’s do that.”

Sometimes you can get to a direction through a series of questions. For example:

Q: “What are you going to do next?”
A: “I don’t know.”
Q: “Does the code work?”
A: “No.”
Q: “Why?”
A: “It doesn’t compile.”
Q: “Why not?”
A: “The class does not exist.”
Q: “What are you going to do next?”
A: “We need to create the class.”

Working in Your First Mob 18

Examples

If you are working on a task or doing test-first development, it is very useful to have an
example written on a whiteboard. The examples should be very simple, and only show one
path at a time. This means you can not use conditional words like “or”, “if”, “depending”, or
“maybe”. If there is an example, it might take many turns before its finished, and having it
on the board will give guidance for the whole team on what they need to do as each new
navigator takes over and continues on the task.

Examples should make you feel like the person telling the example actually did the thing
yesterday. Imagine a teenager talking to their parent.
Q: “What did you do last night?”
A: “I went to a friends house and played Scrabble.”
Q: “How did the game go?”
A: “Well, if I had played words on a triple letter score, then they would score three times.”
Q: “Oh, who won?”
A: “The person with the highest score.”

Does this sound like the teenager actually played Scrabble last night? This is what bad
examples feel like. You want a good concrete example.
Q: “How did the game go?”
A: “There were three players: me, Jennifer and Samantha. Samantha went first playing the
word ‘again’ for 7 points. … Jennifer ended up winning with 297 points.”

Now you have an example that you can turn into code.

These examples should be drawn on a whiteboard, and they will help everybody in the team
be on the same page. Being on the same page means that everyone is working towards the
same goal.

Consume first

It is extremely beneficial to use the “consume first” style of programming as opposed to the
more common “build-up” style of programming. This allows the group to have a clear idea
of where they are going and what is needed. Let’s look at two examples to show us how this
works.

Build-up example

Working in Your First Mob 19

public int x;

public int y;

Q: What do you need to do next?
A: It’s almost impossible to know what to do next right now!

The navigator had a plan, but unless you are in their head, you can’t continue with it. And
it is hard to check if what they were doing is correct.

Consume-first example

Point p = new Point(10, 20);

Q: What do you need to next?
A: I notice that Point does not compile yet. Let’s create that.

public Point(int x, int y)

{

}

Q: What do you need to next?
A: I notice that we are not holding on to the x and y.

this.x = x;

this.y = y;

Q: What do you need to next?
A: I notice that it does not compile. There is no this.x.

public int x;

Q: What do you need to next?
A: There’s no this.y.

Working in Your First Mob 20

public int y;

Because the overall picture was created and used, we were able to fill in the spaces even if
the navigator changes. Also, if in the very beginning it turns out that we should have used a
double (20.5 vs. 20) we would have caught it right away and changed it to a double instead
of an int. This kind of mistakes and assumptions happen all the time in programming. The
consume first style allows the group to catch them and come to a shared understanding.

Yes, and…

When working as a mob, it is important to follow the “Yes, and…“ rule of improvisational
theater. The idea here is to continue with what you have. Do not to delete and undo what the
previous navigators did before you. You can refactor but do not rewrite. This allows progress
to be made continually and prevents people from being shut down in the group.

If you follow this rule, then each step in the rotation moves the mob further ahead than they
were before.

Intentional code

Related to the consume first style of programming and writing on the whiteboard, it can be
very helpful to write a code comment in English to state what you intend to do. Note that
you can refactor this comment as well.

//take the individual points of 6,7 and 0,0 and combine them to form a line

While this says what we want to do in English, it’s not as clear as it could be. We can refactor
at this point.

//create a line from 6,7 to 0,0

Now that the English is cleaner, there’s a much better chance that the resulting code will be
cleaner.

Working in Your First Mob 21

Writing the English allows you to quickly write 3-4 lines at once, which will then serve as
bookmarks for what still needs to be done. Once the code is written, you can delete the
English. It is merely a stepping stone to write from intention.

When you are translating the intention to code, you should usually end up with one line of
English per one line of code. So if you write five comments, you should end up with five lines
of code in that method. This will influence encapsulation either by methods or by classes in
the resulting code.

Native language

If your native language isn’t English, start by stating the intention in your native language.
Translate into English and then translate that English into code. Even though most groups
code in English, regardless of their native language, the intention and subtleties that occur in
one’s native language are powerful and valuable. Skipping the step of forming your intention
in your native language will give you worse results.

Code in English

A lot of times programmers are so used to thinking in code, that you have to remind them
to think in English. Here is a common example.

We are trying to write the method that calculates the perimeter of the triangle.
Q: “How do you calculate the perimeter of the triangle?”
A: “First we create a variable to hold the perimeter.
Next, we iterate through the different sides and for each side we add the length to the existing
perimeter.
Finally, we return the perimeter.”

Notice two things. First, there is an awful lot of programming words in this English
(variable, iterate, return). Second, the programmer is giving the comments for a for-loop
implementation that is already in their head. This is not how a regular person would tell
someone to calculate a perimeter.

To correct this, you might say something like
Q:“How would you tell a child?”
A:“You sum up the lengths of the sides.”

Because this intention is more intentional and less prescriptive, there is a lot more freedom
to come up with different code translations.

Working in Your First Mob 22

Small steps

There are two measures to pay attention to when it comes to small steps.

1. How long has it been since you’ve seen feedback?
2. How long has it been since you checked in?

These two measures serve separate purposes.

The first measure of feedback lets you know if the group is taking too large steps when
completing their tasks. Feedback can come in many forms. But the two big ones are from the
compiler and from executing the program.

Feedback helps to bring everyone in the team to the same mental space. Do not worry about
the feedback always being positive. Many times seeing how something fails helps us to know
what success looks like. Likewise, a different type of failure is also good feedback. It lets us
know that we are making progress. Finally, even seeing failure that confirms that we are
where we think we are is helpful, especially for the times when we aren’t.

The second measure of feedback is how long since you committed code to your repository.
This has to do with how large of a task you are taking at a time as opposed to making
progress within a task. It is possible to take very many small steps, while still taking too large
of a task overall. Not being able to check in frequently has other negative side effects as well.
If you cannot check in frequently, it can be hard to quit when you need to (lunch, end of the
workday, etc.). Large changes between commits can also make it hard to work with other
teams because of merge conflicts. If you are checking in frequently, you will not experience
merge conflicts - however, other teams might. One saying that emphasizes this is:

Be the bird, not the statue.

The Rules for Working with Each Other

It is useful to post the following rule on the wall as well as get a general working agreement
from the mob.

We will treat everyone with kindness, consideration, and respect.

One interesting aspect of treating each other with kindness, consideration, and respect is
that it tends to make everyone in the mob treat each other better and like each other more.

Working in Your First Mob 23

Ironically, cognitive science teaches us that the people we treat kindly we end up liking,
rather than the other way around.

Kindness is rather self-explanatory, but consideration and respect are worth going into.

Consideration

Consideration is really about listening. This is something we don’t get a lot of practice with
because of the focus on individual contributions. The place it is going to show up the most
is at the driver seat. Often the driver will start by not listening to the navigator.

The facilitator can usually fix this by simply saying “No thinking at the keyboard” or “There’s
too much thinking going on at the keyboard.”

Another way that this will manifest itself is that good ideas will be spoken by members of the
mob and will be totally ignored. Usually, these ideas are softly spoken by more introverted
members. As a facilitator, it is your job to call attention to those ideas and make sure that
everyone gets heard.

Over time the mob will learn the habits of listening to everyone and people will find their
spots to contribute. As we gain the experience of being heard, we will also change how we
speak.

Another aspect to consideration is to remember to allow other people to shine. You don’t
always need to be showing how much you know. And if someone has a differing way of
doing it, try their way first and then consider if your idea would make it better. It’s ok to try
a solution in multiple ways.

One final violation of consideration is when members who are not in either the driver or
designated navigator spot, tune out, usually opening their laptops or phones. This can be a
tricky one to handle. I prefer to handle it with environmental settings. Chairs without tables
to put a laptop on, and frequent rotations will do more to keep everybody engaged than
disciplining them when they are not paying attention.

Respect

We always assume that the person who wrote the code before us did the
best they could with the knowledge and circumstances they were in at the
time they wrote it.

Working in Your First Mob 24

Nothing is more corrosive than disrespect in a mob. A group can bond over making fun of
some code that was written by someone else, but you will pay a high price for that bonding
when everybody is nervous that someday it might be them that everybody is ridiculing.
We want to create a space that is safe. Safe to experiment. Safe to learn. Safe to show
your vulnerabilities and weaknesses. Safe to look at and improve code without judging and
criticizing the author. Remember that mob programming exposes a lot about everybody
involved, and we need to be safe and supported.

Closing a Mobbing Session

Learning

Learning is fundamentally made up of two parts. The first part is the experiences which
are the fuel for learning. You need to have experiences to learn from. You’ve just had an
experience of mobbing. This is a great opportunity to learn. Your tank is full of fuel.

However, fuel itself is not enough to get you anywhere. You need to burn it. The way you
harness the potential energy of your experiences is by retrospecting over them, thinking
through them, examining them and imagining new experiments for future experiences.

When we finish a mobbing session, we will run a retrospective to help us learn all we can
from the session. There are many ways of running a retrospective. We are going to show you
the most common way that we use.

Observation Retrospective Framework

A basic idea for an observations retrospective is silently collect observations from each
participants on sticky notes. The facilitator will then read out each of the observations while
placing them on the whiteboard. The facilitator tries to group similar things near each other
so that groupings and patterns can emerge.

Part 1: The Explanation

You want a safe and fertile place in which to gather observations from your group. If the
group has never done an observation retrospective before, you will want to take a moment
to explain why you are doing this so that people will feel more comfortable and you will get
more and better observations.

There are four parts to this explanation to do:

1. Selective attention
2. Expectation biases

25

Closing a Mobbing Session 26

3. Single perspective
4. Using sticky notes

Selective attention

(We usually show this video: youtube search: Selective attention)
Take a look at these two pictures.

You might notice a few things that are different. And you might think the things you notice
are obvious. But if you have a group write down the things, each one will see things the other
one doesn’t. No one knows which ones are obvious to them and not obvious to someone else.
This is why we ask all your observations, no matter how obvious they are. Everyone misses
a lot of things right in front of their eyes.

Expectation biases

(We usually show this video: youtube search: Faa Baa)
Look at this picture.

Closing a Mobbing Session 27

As you look at the picture, you might notice it moving or that it’s spiraling. It is doing neither.
However, while many people think of our eyes as cameras and our ears as microphones, what
we experience as sight and sound is really put together in the visual and auditory cortexes
of our brains. And this is a lot more akin to photoshop.

Our expectations and biases mean that we see and hear things that might not have ever
happened. One reason we collect observations is to get the things that happened in front of
our eyes that we missed. Another reason is to dispel illusions that we think happened but
never did.

Closing a Mobbing Session 28

Single perspective

(We usually show this video: youtube search: assumptions)
Here’s another picture.

What you are seeing is a trick called forced perspective. When you only have one viewpoint,
it is easy to be mislead. Everybody is vulnerable to this because everybody experiences things
from a single perspective. But we have multiple perspectives in the room when we mob. By
taking collective observations, we reduce the chance of being fooled by a single perspective
and get a better understanding of the full reality.

Using sticky notes

On our list of cognitive biases is rationalization. There are many simple things that I have
learned long enough ago that I forgot I ever learned them. When faced with knowledge and
no memory of acquiring that knowledge, it is rational to assume that I always knew it and
that is just another aspect of common sense.

How do you write sticky notes is one such simple task that often falls prey for this
rationalization. Here’s what you need to know.

Closing a Mobbing Session 29

While each of these rules is simple, notice that when taken together the green side is much
easier to read than the orange side. And because humans engage in fight or flight responses,
most people, when faced with the challenge of reading the orange side, instead choose to skim
over or zone out. Following these four simple rules helps to ensure that themob’s observations
get read. A good example of overwhelming information is:

Lazy person fact #6543671283

Closing a Mobbing Session 30

You were too lazy to read that number

For sticky notes, it is also important to have good markers to write with. We suggest Sharpies.

Part 2: Collecting observations

When you ask for observations, if you just say “give me any observations,” then people get
overwhelmed by the vastness of possibilities. Instead, you want to highlight the different
areas that observations can come from. Think of this as a spotlight pointing out the different
corners so that people will give you a greater quantity and variety of observations. For
example, try saying something like:

“Any observation is valid. You can have observations about the syntax of the language, the
code we used, the IDE and tooling, how we worked as a group, emotions you felt, worries or
concerns about the feature, things you liked or disliked. Or things that surprised you about
today.”

After you ask for observations, you want to give enough time for everyone to write them
down. I usually try to count to twenty in my head after I have heard the last person stop
writing, just to make sure we got everything.

Collect all the sticky notes and bring them up to the whiteboard. It’s time to start reading
observations.

Part 3: Reading observations

Mainly you are just going to read the observations out loud and place them on the whiteboard
to allow for groupings to emerge.

Here are a couple of key things to remember.

• Use your whole space on the whiteboard or wall.
• If you do not have enough space for the number of stickies, don’t worry. Just read them
out loud and don’t worry about the groupings.

• If there is any confusion, this is the time to ask for clarification.
• If you feel there is something to add or compliment or even dispel, you can do that
while reading the sticky.

Closing a Mobbing Session 31

• If a sticky opens a larger discussion, place it to the side and return to those stickies
after going through all the rest.

• After everything is done, it can be useful to circle and label 3-4 groupings that have
emerged.

Final thoughts

The entire observation period should take 15 minutes on average. It is important to plan for
that time as it is easy to run over and skip it if you don’t.

If you are mobbing for a full day, we recommend two observations retrospectives, one before
lunch and one at the end of the day.

When retrospectives are frequent and short, the outcomes from them are small. But those
small outcomes are usually acted upon, and problems can be nipped in the bud. When they
are long and infrequent, you get big outcomes that are largely ignored.

In your first retrospectives, don’t expect a lot of observations. Like everything else, it takes
time to build the habit of noticing what is going on. Part of the reason to do regular
retrospectives, is to build the metacognition abilities of your team. Once those are built, you
might notice people making observations while the mobbing is happening and even writing
them down. At this point you might be tempted to abandon the retrospective all together,
as it is no longer needed. Don’t. If you do, you have to rebuild that skill up after a couple of
weeks when the habit fades away.

Pictures used from Google image search labeled for reuse. The last picture of sticky notes is
from Michael Sahota.

Mobbing Cheat Sheet

Mobbing

1. Arrange people in a circle with the driver at the keyboard and the navigator as far
away as possible

2. Rotate every four minutes, navigator becomes the driver
3. Make sure driver is not thinking at the keyboard
4. Small steps, frequent feedback
5. Small steps, frequent check-ins
6. Monitor for kindness, consideration and respect
7. End while still happy (2 hours or less)

Retrospective

1. Retrospective
2. Explain observations and sticky notes
3. Collect observations
4. Read observations and place similar ones near each other

32

Strong-Style Pairing
An important aspect of mobbing is manner in which the driver and navigator(s) work to-
gether and split roles. This style of collaboration comes from Strong-style pair programming
as discovered by Llewellyn Falco.

The basic idea is:

For an idea to go from your head to the computer, it must go through
someone else’s hands.

While programmers have years of practice taking an idea from their head to the computer
through their fingers, most programmers have little to no practice articulating their thoughts
so that another person can understand them.

Here are some tips and exercises to help develop the skill.

Basic navigation flow

When you are navigating, there is a 3-step process you tend to follow.

1. State intent
2. Location
3. Keystrokes

The navigator is always trying to speak at the highest level of abstraction that can be
understood. Even if the high level intention is not enough, it is important to say it so that the
driver can map the actions to higher level concepts.

If the driver does not seem to react when you give the intention, or if they move to the wrong
location, your next step is to get them to the right place. Line numbers can be very helpful
for this, as well as the use of screen terminology such as:

• Menu bar
The top-level text menus usually starting with File, Edit etc.

33

Strong-Style Pairing 34

• Tool bar
The top-level icon menus.

• Task bar
On Windows machines, the task bar is usually at the bottom of the screen and holds
which programs are open.

• Tabs
Editors and browsers use tabs to allow many documents to be open at once.

• Tab well
Editors will sometimes have section areas on the right, left, bottom or top to hold things
like file navigators. These areas are called tab wells.

• Gutter
The sideline next to the text, usually where the line numbers are.

Once you’ve gotten the driver to the right location, if they are still not moving, you will
need to give keystrokes. Remember to also use keystrokes for keyboard shortcuts. Keyboard
shortcuts can be a little tricky because often they are muscle memory for you and you
don’t know them yourself. One trick is to pretend there is a keyboard in front of you, and
do the keyboard combination on the pretend-keyboard. Also remember that when giving
keystrokes, you also want to convey the intent. For example, “Let’s extract the method. That
is ctrl+alt+m”.

Cellphone exercise

One exercise that can be helpful in giving people a sense of navigating and driving is to
have a driver use your cellphone to do a basic task of yours on your cellphone using only
your words. You do not need to give your own passwords. Unlock your phone and hand it to
the driver. Then state your intention. For example, “I’m going to show you how to play my
favorite game.”

Remember, you are going to do lots of little cycles of the three step basic navigation flow.
For example,

“Open up the game”
-no response-
“Move to the next screen” -no response-
“Swipe left”
-moves to the next screen-

Strong-Style Pairing 35

“Click on the game icon”
-no response-
“It’s in the upper right corner” -opens game-

After you have practiced the driver-navigator, switch roles and phones and give the other
person a chance to try the roles reversed. Usually this exercise takes around 5 minutes per
person.

Mobbing with an audience
Mob makes a great way to do trainings, and hands-on workshops at conferences. While you
can scale regular mob programming up to about 20 people, there’s some points where it is
more convenient to do mobbing with an audience.

Scaling

Mobbing can scale to about 20 people. But there are lots of aspects to pay attention to.

Number of rotation cycles

When you are mobbing, you want everyone to get several times times on a computer, a
minimum of 2-3. If you take the number of people you have times the number of minutes at
the keyboard, you get the total amount of time per cycle. Here’s some examples.

people time cycle time

6 4 mins 24 mins
10 4 mins 40 mins
10 2 mins 20 mins
15 4 mins 60 mins
15 2 mins 30 mins
20 4 mins 80 mins
20 2 mins 40 mins
20 1 mins 20 mins

The next question is how much time do you have? If you are doing an all day training, 1 1/2
hours cycle time is fine. Everyone will still get 4-5 chances at the keyboard. If you are doing
a 1 1/2 hour conference session, you need a smaller mob.

Event Based Rotation

Training and conferences also mean that you may be doing work that is a little more
understood by the facilitator. This offers the opportunity to rotate on something other than

36

Mobbing with an audience 37

time. When event-based rotation keeps you within an average of four minute rotation time,
I prefer it as a method of rotation. It is satisfying to rotate on accomplishment.

Here are some events that I will use for rotation:

1. Unit test is written
2. Unit test is passing
3. Small task is completed
4. Single line of code is written
5. Story (example) is written on a board

When teaching kids in Africa, we had 30 students on a single computer. We
rotated on single line of code written. This allowed everyone to get a couple
chances at the computer, even in a short two hour session.

Mobbing with an audience 38

Audience

Mob Programming with Audience

Sometimes scaling the mob doesn’t work or give the experience you want for the size of the
group in the time you have. In these cases, we recommend having a mob with an audience.

To the main part, this works the same part as a regular mob, with a couple extra rules.

1. People can join or leave the mob at will.
2. When joining, sit right behind the driver.
3. The audience can also volunteer insights and information to the navigator.
4. Audience participates in retrospectives.

Mobbing with an audience 39

If the audience is volunteering too much information, so that the navigator does not get a
chance to get their focus and flow, quiet them down to give the navigator a chance. Sometimes
loud audience members are a sign of people who need to be invited to join the mob.

On the other hand, if the navigator is stuck or frightened, you may need to encourage the
audience to help them out.

Diversity in the mob

When you asked for volunteering from the audience to become the mob, you will end up
with a subsection of your audience. The makeup of the mob will effect how and what they
will do. The people who feel more comfortable volunteering, will volunteer first. Since you’re
only selecting a small group, you might have to encourage minorities to join early on, or your
mob will not reflect your audience. Instead the mob will end up being made up entirely of
the most common majority in the room.

There are different types of diversity. Sometimes you may need to encourage programmers
without experience in the particular language, non-programmers, different roles, different
experience levels, different ethnicities, or different genders. The more diversity you get in
the mob, the more the audience can connect, feel safe to join and the better your session will
go.

When People Get Stuck
There are times in the mob when the person who is navigating will not know what to do.
Here are some strategies to deal with that situation.

Situation 1 - navigator is confused

If you’re with a new group, and the navigator is confused and maybe a little bit scared, the
best thing to do is to ask the rest of themob to help them out. This allows progress to continue,
and makes people feel comfortable being exposed during that short formative period. It also
allows things to go back to the designated navigator as soon as things become unconfused.

Situation 2 - only one person knows what to do

Sometimes you’ll have only one person who has any idea how to do the task at hand. In
these situations, keep the rotation but allow that person to continue navigating, effectively
removing the designated navigator. Also, when the single expert would rotate to the
keyboard, rotate twice so that they are skipped. We want to avoid thinking at the keyboard.

This situation should not persist for long. Maybe an hour or two. But then the knowledge
should be starting to pick up with other people in the circle. At every chance to you that
someone else might be able to do even a little piece of the puzzle, you should facilitate pausing
the expert to allow other people to start filling the role of navigator.

Situation 3 - purposefully transferring knowledge

When you have a team that is mobbing, it is good to practice improving the underdeveloped
navigation skills in your team. A good way to do this is to do a navigate the navigator -
session.

In this session, the more experienced navigators will purposely pull back from navigating.
They will guide the navigator through the use of questions and high level concepts.

40

When People Get Stuck 41

For example, instead of laying out the steps of unit testing, they might instead ask “Have you
thought about writing a test?”. They might even get more direct and say “Please write a test”.
But they are simply getting the navigator to navigate the driver. They are never navigating
the driver themselves.

Situation 4 - opting out

Sometimes it is a good idea to allow people to opt out of a mob. Sometimes it is a bad idea
to allow people to opt out. Here are our overall suggestions.

Don’t start by allowing people to opt out. New things are always a bit scary. By allowing
people to opt out before you even start, you make the situation more scary. When everybody
is just doing things, it’s what everyone does. If only some are doing it, now you have to be
brave and volunteer.

When you start, put everyone in the circle, get the timer quick and don’t offer the option of
backing out. After they’ve taken their turn a couple of times, then you might want to offer
the option of opting out.

There are two ways of opting out. One is they are not in the room. This method is useful
only if the person opting out is having a very negative impact on the rest of the mob. While
opting out might allow the rest of the mob to function well, it rarely allows people not in the
room to improve. Sometimes, however, the social aspect of the rest of the mob talking and
laughing together, will draw people who opted out back into the mob.

The other way of opting out is being in the room but not be part of the mob. Think of this
as being part of the audience, observing the mob. The important thing here is to make it
welcoming to them when they are ready to join.

Also realize that sometimes people are just full. They need a small break some of what they
have just experienced. Again, make it easy for them to rejoin as they are ready.

Remote Mobbing
Remote mobbing is much harder than regular mobbing. We don’t suggest it as the way to
start. However, sometimes it is the only choice you have.

It will require screen sharing tools (see Reference 3).

There are three different models of remote mobbing. We will outline all of them.

The Remote Employee

In the remote employee model, most of the team is colocated with one member being remote.
Sometimes this member is always remote, and sometimes this member is part-time remote. In
this situation, the best starting point is to learn to mob colocated. And later extend it remote
with the remote employee always skipping the keyboard. This is quite possible once everyone
has learned the navigation skills. We also suggest you use the video setup mentioned below.

The Remote Company

In this model, everyone on a team is located in a separate place. There is no company office
and there is no chance to learn mobbing colocated. In this model, you will be using screen
sharing software that allows for the change of the control of the keyboard. It is also useful
to include the use of a mob timer (See reference 2). An odd advantage of this model, is that
while everyone is at a disadvantage, they are all at the same disadvantage. Remember to keep
your rotation short. Be extra careful that the driver is not thinking. Also, remember to take
time for retrospectives and video chat.

The Remote Team

In this model, half of the team is located somewhere and the other half is located in a
different spot. The key here is to set up the mob timer so that at any given time, the
designated navigator and driver are not located in the same spot. The reason for this is
to force communication between the two groups. It is too easy for a group talking amongst

42

Remote Mobbing 43

themselves not to be heard by the other group. And unfortunately, we have too much practice
not paying attention on a conference call. In this model, we again suggest use of a mob timer
(See reference 2) and setting up an external video system mentioned below.

Video

The question of video is a tricky one. In general there is not much gained from having video
on, especially when it is just your face looking at the screen. The teams that have reported
success with video, have a separate computer that is sharing the video and taking the picture.
The advantage of this is most of the time you are not looking at the video. When somebody
turns their head, you get to pick up many non-verbal signals that the person wants to talk to
you.

PART 2
Developing into a Full Mob

All the chapters up until this point have been about getting started. Although we have
referred to that as mob programming, it is actually closer to the randori technique with
strong-style pairing. The difference between randori and mobbing seems trivial from the
outside. It is closer to the difference between little league and professional sports. While
much of the trappings are the same, the level of skill and ability is greatly increased. One of
the biggest differences is the level of trust and understanding between the participants.

In this section, we are going to start to talk about how to transition a team from their very first
mob to fully functional mob. This takes some time. This can take several weeks. Remember
to go slow. Introducing one new thing at a time.

44

Building habits
Now that you´ve gotten started with your first mob, the most important thing is to keep
going. As the saying goes: “The best exercise is the one you do”. As a coach or facilitator, you
are trying to build habits. Habits take time and repetition to form. As such, there are many
good intentions, that get in the way of forming habits. Heres what we´ve learned to avoid
and nurture.

End happy

No matter how good a workout may be, if you are exhausted, you don´t want to show up
the next day. One of your primary goals as a facilitator should be to end while you´re still
happy so that everyone wants to show up tomorrow. Try to limit sessions to two hours in
the beginning for this reason. Also be very careful about running overtime, especially when
overtime means staying late after work or missing lunch. You don´t want anyone saying “oh
great, we´re mobbing again. I´m going to be late picking up my kids”.

There are two big things that prevent people from ending on time. The first is forgetting to
leave enough time for the retrospectives. The second is working in too big of chunks, so you
feel uncomfortable leaving the task in such a stage of incompleteness.

Also, look for natural endpoints that might come a bit early. It could be better to end 20
minutes early at a good place.

Learning to mob

Another common distraction on the way to learning how to be a functioning mob, is to place
too much importance on being productive. While we highly encourage you to do actual
production work, don´t worry about being too productive in the beginning. The first few
sessions people need to learn to work together. It can be easy to forget that people have had
10-20 years of practice working by themselves and only a few hours of practice working
together as a mob. Give yourself permission to slow down while learning a new skill.

Too often people feel stressed and overburdened. Because of this, they don´t allow themselves
enough time to learn new skills, and improve. Because they are not improving, they continue

45

Building habits 46

to feel stressed and overburdened with no time to improve. It is an unfortunately common
trap.

Timing

A lot of time people will try out new things like mobbing saying “let´s try it every other week
for a few hours”. It is very hard to build any habits doing something only twice a month. If
you are going to spend 8 hours mobbing, it is better to spend 1 hour over 8 days than 8 hours
on one day. Also remember that rest is a very important factor. You want to have a little bit
of learning, a little bit of rest.

Monitoring your mob
Now that your team is doing a little each day, the next step is to start paying close attention
to how the members of the mob are interacting with each other.

Engagement

Engagement is the basis for shared understanding in your team.

The main difference between a high-functioning mob and a beginning group is engagement.
You want to make sure that everybody is engaged. This is particularly problematic for the
people who are neither the driver or the navigator. The first step is to model the behavior. If
you are distracted on your laptop or your phone, you´re sending a clear message that they
should be too.

Engagement signals

1. Quiet

The mob should never be quiet. Quiet not only means that the other participants aren´t
engaged, but it means that the navigator isn´t navigating and probably that the driver is
thinking. If your mob is quiet, that is a distinctive warning sign that something is wrong.

1. Head orientation

Even though you´re sitting at the back of the room, it is easy to tell if people are engaged
simply from their head orientation. Are they looking at the screen? Good. Are they looking
somewhere else? Not good.

1. Laptops and smartphones

Although later you will want them to have laptops, it is not a good idea in the beginning.
Often laptops will encourage people who are not driving or navigating be completely

47

Monitoring your mob 48

disengaged, checking email or doing other activities. Sometimes this will go away naturally
by keeping the rotation time tight and making them move around a table. Although we will
also implement a no laptop rule when necessary.

This is a very tricky things. When members of the mob check out when they are not at
keyboard, it is akin to saying: “this is not important enough to require my attention”. This
quickly becomes: “YOU are not important enough to require my attention.”

Full team engagement
When you’re learning to mob, you need to have a designated navigator so that you can learn
the skill of how to talk. If you don’t do this, you will naturally isolate the more quiet people
in your team. Then they will not learn to express themselves and not be able to keep up.
Once you learn how communicate your ideas on tasks and code to another person you want
to move from a single navigator to an entire team contributing at the same time.

Here are some of the changes to introduce as you move towards full team engagement.

No designated navigator

This means that you don’t need someone standing up while they’re doing navigation. The
only position that is actually relevant is the driver. This is a very short period of transition
and after a little bit of that I will introduce…

The mob timer

Themob timer is a program that not only tracks the amount of time, but also who is supposed
to be at the keyboard. Once you have a mob timer, you no longer need to rotate seats. And
when you don’t rotate seats, the concept of the designated navigator becomes even more
blurry. This frees everybody to focus on the code instead of their turn.

For a list of Mob Timers checkout theMob Timers Reference in the back of the book.

Encouraging participation

Many times multiple people will have differing ideas on how to do something. When you
have a designated navigator, this isn’t somuch a problem because the navigator gets to decide.
But once you’ve moved to a full mob, you are going to have to facilitate. The first rule is to
encourage action. As they say in agile, Don’t discuss something for 20 minutes that you
can do in 10. As quickly as possible, try to get to doing something.

49

Full team engagement 50

However, you also want to encourage everyone in the mob to contribute. Quieter and more
introverted people will easily let go of their ideas and not fight for them. The best way to
encourage all ideas to stay present is to do multiple solutions. If Sally and Tim have a way to
solve a problem, try one first then the other. Afterwards decide which one was best. You get
very different conversations with hindsight than you do beforehand. Sometimes what results
is that one of them won’t work. Sometimes a third or fourth way might present itself. This
is ok, do all four.

In the beginning, it is important to try each one so that everybody knows they can be heard.
After you’ve done that a few times, people will start to trust that they can be heard and then
it is ok to confirm after the first one that you still want to do the second. It is surprising how
often you will get the response “Who cares, it works”. It is important that you establish trust
and safety so that this comes from a place about the code and not defeat. But there are other
things to do to guard against team members feeling defeated.

Preference the weird and the quiet

A good way to encourage participation and learning is to preference people who speak less.
If one of your team members rarely speaks and they speak, try their way first. Also, if one of
the ways sounds very weird, preference that. This gives people courage to speak up and sets
the habit of stepping outside your common routines.

Avoiding decision paralysis

There are two ways that people tend to get stuck. One is when into the vastness of a large
open space. Think of this as you’re staring at a blank page. There’s so many different things.
Where do you even start? It is very easy to get caught up in the abstract concepts and if you
find your team stalled, what you need to do is get them to focus on a specific task.

Almost always an example is the right thing to do right now. Even if it is the wrong example,
its failure can help you figure out what success looks like. Choose a path and go.

Conversely, you can also get tied up in the details. What is the perfect shade of red? Is it
#ff0000 or is it #ee0000? Have you considered #dd0000? Or even #ed0000? People can spend
an absurdly long amount of time talking about these types of details. This is normally referred
to as bike-shedding. The term comes from a saying “If you give people plans for a nuclear
power plant, they will look at it and think it is ok. But if you give them plans for a bike
shed, they will argue for days about the color of the paint.” Although this paralysis is the
exacts opposite of looking into the vastness, the solution is still the same. Pick one and go.

Full team engagement 51

Normally, asking the group a roman vote is an easy way to force a decision without the
decision coming from the facilitator. This allows the facilitator to stay a facilitator instead
becoming a decision-maker.

Roman vote

Roman vote is a quick and easyway to get input from the entire team. Simply have everybody
stick their fists out with their thumb up. If they agree, point their thumb up. If they disagree,
put their thumb down. If they don’t have strong feelings, they can put their thumb sideways.
Either way, everybody votes, at the same time, all at once. Majority wins.

Walking away

As a facilitator, one of your jobs is to make the team self-functioning. This means they can
function without you there. If you are going to help them to function without you there, you
can’t do that while always being there. What you want to do is start adding little periods
of time while you’re not there so that they are used to you not always being there. Walk
away to get something to drink. Have a conversation on your phone. Take an extra long
bathroom break. When you come back, you notice the team slips a little bit. This is good. Get
them back on course, then give them another chance to continue without you. Over time,
you want to grow the periods when they are alone. Think of this as turning your team from
kids to adults. You can’t expect self-organized decision making if you always do decisions
for them. You need to give them safe spaces to try, fail and succeed on stuff on their own.

Sometimes it is really hard not to step in when you are a facilitator. You know the right
answer. And it kills you to stay silent. Walking away at these moments is a great solution.

Tip. Carry a refillable water bottle. This gives you an excuse to go refill it and will also remind
you to go to the bathroom.

Holding the space

Kids will play with their friends differently when they are home alone compared to when
their parents are there. This is true even through in both situations they will not talk to their
parents, but play by themselves. This concept is referred to in the facilitator-world as holding

Full team engagement 52

the space. If you do you set up the right habits and patterns, you can enforce them by your
mere presence in the room.

This is not that surprising. But it can be hard to value holding the space. To realize that you
are doing nothing but being present is something that you need to prioritize and give time
to.

What Established Mobbing Looks Like
On the first day Joy came into the office, the team was already working. She sat down
watching them as they said hello. She was surprised when they just continued on their way,
but even more surprised when a few minutes later timer went off and they added her name
on the rotation list. She was nervous at first, a lot of what they were saying was unfamiliar.
And she did not want to appear stupid in front of the group. But everyone else was taking
their turn, so when it was her turn, she went up to the keyboard making a small joke to
remind that she was new.

It was not so hard. People seemed to know where she needed help, and gave lots of details
and hints to help her through the new areas. Still she was relieved when the timer went off
and she went back to the group. The ideas seemed to be coming from the team as opposed
to a single leader. Some of the team members would become more quiet, but then speak up
from time to time, warning of a mistake or forgotten requirement.

She started to notice that different people of the team had different strengths they brought
to the mob. Eric was the most senior member and been at the company for a long time.
Many times people would ask for information about obscure code or piece of history from
him. Jessica seemed to always be one step ahead on her laptop, often pulling up sample code
from Stack Overflow right about when team was about to run into problems. Timothy did
the same thing but with real people, often going to a product manager, analyst or another
section of a company and bringing over the person we needed to talk to. Steve seemed to
be the most into the geeky language features of the code, often suggesting optimizations or
technologies we should be using right now.

Soon Joy started to feel comfortable asking questions. Not just comfortable but like she
understood enough to ask valuable questions. Sometimes instead of direct answer, the mob
would just say “Oh, we had not thought of that”. It was odd being able to contribute
without knowing the answer herself. One time when they were stuck understanding why
the prediction engine was working the way it was, she asked “Why do you expect it to give
this result?” “Because of the pricing history”, Timothy responded. “Not the pricing history”,
said Eric. “It’s the browsing history.” “Oh, right”, said Jessica. “We need to cross-reference that
data or it will never work.” Joy saw this a lot. Different insights into the code coming from
different people. Even in the code they had just written. She could not identify whose idea
it really was. This also came into play when the code broke. In her last job, she remembers
people getting teased mercilessly when it was discovered they had written a bug. Here, when

53

What Established Mobbing Looks Like 54

something went wrong, there was no sense of defense or attack.

Instead, they would often do small retrospectives. Asking for ideas on how to prevent it
from happening next time. Brainstorming on sticky notes and categorizing them on the wall.
There was a lot of writings on the wall. People would sketch out scenarios on the whiteboard.
And she mentioned she did not understand the mechanics of S-expressions, a couple of other
people admitted they did not either and they added a post-it note on the learning hour ideas.
She’d have to make sure to get in earlier tomorrow so she did not miss the learning hour.

By the end of the day, she was already feeling part of the team. She noticed that everyone
had their chair set up to comfortably look at the wall all day. She was planning on bringing
in her cushion for tomorrow. But more than the environment, she noticed that the ideas she
was having were being listened to. It seemed like people were giving her a little extra space,
because surely the other members of the mob could contribute the things she was doing right
now. The fact that they were willing to let her, the new person, guide a little bit, really meant
a lot.

The day came to an end at 5 pm, Joy was relieved to see that they were not working late into
the night. It made it easier for her to get home on time.

Different ways to contribute
There are a lot of different ways of contributing in a mob. In this section we want to list
some of the many ways we have observed contributions in a mob. This is not a complete nor
thorough list. There are many ways, small and large, that each participant can contribute.

We hope that this list helps you to see more of the pieces that everyone is contributing and
maybe helps someone recognize what they are bringing when they may otherwise feel out
of place.

Information search

You know you’re going to need a piece of information in 5-10 minutes that no one in the mob
has. Googling this so that you have it for the mob when they need it really helpful. This is
usually done on a personal laptop or phone. It may look like you’re mentally stepping away
from the mob, but only briefly.

Bring someone in

You realize that someone who is not in the mob has information or decision power that is
helpful to do the task at hand. Going and getting that person, or remotely contacting them
so that they can temporarily join the mob as needed. This really helps the mob from being
blocked.

Contribute ideas

Having a good idea and knowing how to implement it are not the same thing. Both are
important and they take different amounts of time. A lot of times the sparks of the idea get
forgotten and credit is assigned to a single person but this is rarely the reality.

55

Different ways to contribute 56

Contributing bad ideas

Getting to a good idea may be through bad ideas. These ideas move us forward and help us
recognize what the good idea looks like.

History

Most projects have history that is easy to forget. A valuable contribution can be remembering
the history. This history can warn you of dangers you’ve forgotten or inform you of assets
you did not realize you had.

Empathy in the mob

It’s easy to slip in the bad habits, and there’s some people that help us to show the better
side of ourselves. These actions help to create an environment of kindness, consideration
and respect. This is something that takes real effort and is sometimes taken for granted.

Patience

It is easy to get frustrated when trying to solve a problem or when amistake is made. Patience
helps us to persist. It also helps us to have safety when learning or struggling.

Impatience

It can be easy to get stuck in the weeds. Having someone remind us to focus and keep moving
can be very helpful.

Customer voice

We’re building things for people yet often we see ourselves as separate from our users.
Bringing the customer viewpoint helps make better products.

Different ways to contribute 57

Noticing feelings

Feeling alone is easy even in a mob. We’re also in an industry that wants us to suppress
our feelings. Having someone acknowledge and support how you are feeling and doing the
emotional labor with you can turn a bad day around.

caretaking empathy in the mob empathy for customer patience contiuos noticing feelings

allow space - not talking - Yield to the less privileged voice - Contribute an idea -
enthuthiatisic Listen - Amplify voices

Celebrate moments of excellence Celebrate moments of failure

getting the mob needs to learn together

drive toward action clarifying

expander

reconization

housekeeper tracking todo’s questions

long term growth - automation task - removing repeated pain -

raising the bar noticing the bar

REFERENCES

Online as well

Here are some handy references to use while mobbing. They are online as well in case you
need them and left your guidebook at home.

http://www.mobprogrammingguidebook.com/references

58

Deliberate Practice
Development katas are simple exercises that we can do for the sake of practice.

FizzBuzz

1,2,Fizz,4,Buzz,Fizz,7,8,Fizz,Buzz,11,Fizz,13,14,FizzBuzz
Print the numbers from 1-100 replacing numbers divisible by 3 with Fizz, divisible by 5 with
Buzz and both with FizzBuzz.

Roman Numerals

1. Given a number, convert it to a roman numeral.
2. Given a roman numeral, convert it to a number.
3. Program roman numeral addition, without allowing to convert to numbers in between.

Games

Most games make for good katas. Here are a few of our favorites

1. Tic-Tac-Toe
2. Battleship
3. Minesweeper
4. Bowling (score card)
5. Blackjack
6. Checkers/Chess
7. Yahtzee
8. Scrabble

59

Deliberate Practice 60

Checkouts

Create a receipt and checkout program. Interesting pricing rules include

1. Multiple items
2. Discounts if 3 are purchased
3. Discounts if 3 or more are purchased
4. Weighable items (3.5 pounds of candy)
5. Rates per ranges (0-1 lbs $5/lbs, 1-10 lbs $4 per lbs, 10+ 3$ per pound)
6. Taxable items
7. Buy one get one free promotions
8. Combo Promotions ($5 off hotdogs & buns)

Math

Math problems are also fun.

1. Triangles (perimeters, area, angles)
2. Shortest route
3. Integer Range (does 1-100 contain 65? overlap 50-200? contain 5-10?)
4. Prime Factors
5. Change Machine (which coin combinations to give for 55 cents)
6. Game of Life
7. Leap Year

Words / Text

1. Anagrams
2. Secret Decoder Ring
3. Word Wrap
4. LCD numbers
5. Natural Sort (1.txt,2.txt,10.txt,20.txt)

Deliberate Practice 61

6. Diamonds

Exploratory Testing

Test Target

You can use any software, website application or electronic device to do an Exploratory
Testing kata. Some of the qualities that make a good test target are:

1. Understandable Domain (either common or team specific)
2. Target rich - a fair amount of problems to find
3. Small area to test
4. GUI, API or Physical Interface

Charter

Choose a single charter for your Kata. Possible charters include:

1. List Features while testing (Mindmap)
2. Find Bugs & Questions
3. Toolings (Bug magnet, Chrome Developer Tools, Burb Suite, etc…)
4. Create tests scripts (Selenium, Cucumber, etc…)
5. Create bug reports
6. Thorough notetaking
7. Test Planning (list possible areas and charters)
8. Performance Testing
9. Security Testing

Deliberate Practice 62

10. Enhancing Testability & Supportability
11. Different Environment Testing
12. Usability Testing (personas, Nielsen heuristics)
13. Analysing logs
14. Heuristics (SFDPOT, HICCUPS, etc…)

Non-development

Sometimes you want to practice mobbing in a non-technical setting.

Writing

Write a blog or an essay. Remember to outline (at minimum the paragraph you’re working
on) to keep everyone in sync.

Other

Any suggestion can make a good kata. Our rule is whoever suggested the kata becomes the
product owner and is responsible for defining the user stories and prioritizing them.

Mob timers
Here are a few mob timers (In order of our preferences):

https://github.com/GreatWebGuy/MobTime/releases
Windows & Mac
Easy to see countdown; Easy to pause.

https://github.com/MobProgramming/MobTimer.Python/releases
Windows & Mac
Full-screen forces rotation; Easy to see countdown

63

Mob timers 64

https://github.com/MobProgramming/MobProgrammingTimer.Net/releases
Windows
Hard UI; Full-screen forces rotation

http://oss.jahed.io/agility/timer.html
Web-based, no install needed
Can’t see while programming

Screen sharing tools
Here are a screen sharing tools:

Features * Remote control - not all tools allow others to control the desktop, these do * No
install - these tools allow viewing without installing

Voice and video

Skype

This is a popular video conferencing app. It will share screen but without remote control. On
a plus side, it’s voice and video is usually good. It is often used with a different app that is
doing screen sharing.

Google hangouts

This requires a plugin installation on a browser, but not an app of its own. Almost everybody
has an account. But, it does not do remote control but will run from your phone if you want
to use that as your secondary video device.

Screen and control

Join.me

This has remote control and the viewers and can do it without install through a web page.

Virtual environment with Shadow

Nowadays, it is easy to set up a virtual machine on Amazon and have everyone remote into
it using Windows Shadow (for administrators). This has many advantages around speed and
control. Because everybody is going into Amazon, personal bandwidth is minimized and

65

Screen sharing tools 66

no user has a speed advantage because it’s their machine. Also, Shadow is extremely quick,
meaning IntelliSense can feel responsive. This also has the advantage that the dev machine
always available regardless who is sick. Just remember to turn the machine off when you’re
not using it.

VNC

VNC is a screen sharing app from the days before screen sharing was an internet phe-
nomenon. You have to set up your own server and open ports or create tunnels to connect
if you are going through the Internet. However, it does give you complete control and will
work in systems that don’t have internet access. It does not handle voice and video.

Full package

Screenhero

This screensharing has had closed circle of users, meaning only those who are already in
can give you access. It is to be integrated with Slack. It has nice optimizations around screen
sharing and remote control.

Appear.in

Video-conferencing software. Works well with anonymous guests. No install.

WebEx

Video-conferencing software. If your company is already using this, you already know about
it and will probably use it. If not, don’t worry about it.

Zoom.us

Video-conferencing software. Works well with anonymous guests. No install.

	Table of Contents
	PART 1
	What is Mob Programming?
	Mob Programming
	Why would you have 5-8 people working on one thing?
	Getting the best out of your team
	Quality - Separate Programming
	The benefits of high communication

	How to use this book
	Beginner facilitator
	Intermediate facilitator
	Advanced facilitator

	Not Just Programming
	Setting Up The Space
	Basic Setup
	The Screen
	The Facilitator
	The Work
	The Computer
	Seating and roles
	The Rotation

	Working in Your First Mob
	Is the mob working?
	Preparing the navigator
	Consume first
	Yes, and…
	Intentional code
	Small steps
	The Rules for Working with Each Other

	Closing a Mobbing Session
	Learning
	Observation Retrospective Framework
	Part 1: The Explanation
	Part 2: Collecting observations
	Part 3: Reading observations
	Final thoughts

	Mobbing Cheat Sheet
	Mobbing
	Retrospective

	Strong-Style Pairing
	Basic navigation flow
	Cellphone exercise

	Mobbing with an audience
	Scaling
	Audience

	When People Get Stuck
	Situation 1 - navigator is confused
	Situation 2 - only one person knows what to do
	Situation 3 - purposefully transferring knowledge
	Situation 4 - opting out

	Remote Mobbing
	The Remote Employee
	The Remote Company
	The Remote Team
	Video

	PART 2
	Building habits
	End happy
	Learning to mob
	Timing

	Monitoring your mob
	Engagement

	Full team engagement
	No designated navigator
	The mob timer
	Encouraging participation
	Walking away
	Holding the space

	What Established Mobbing Looks Like
	Different ways to contribute
	Information search
	Bring someone in
	Contribute ideas
	Contributing bad ideas
	History
	Empathy in the mob
	Patience
	Impatience
	Customer voice
	Noticing feelings

	REFERENCES
	Online as well

	Deliberate Practice
	FizzBuzz
	Roman Numerals
	Games
	Checkouts
	Math
	Words / Text
	Exploratory Testing
	Non-development
	Other

	Mob timers
	Screen sharing tools
	Voice and video
	Screen and control
	Full package

